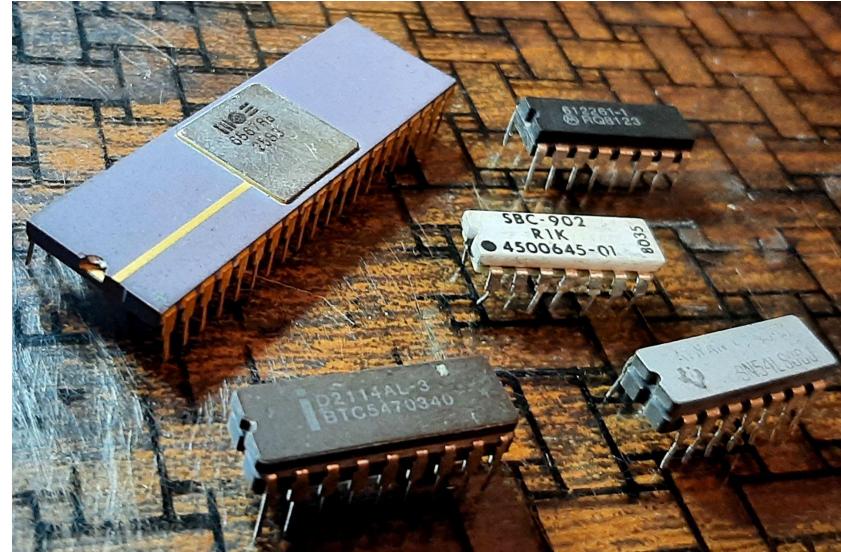


# **Testing 678 Chips & Counting**

**Evie Salomon  
VCF West 2024**

# **Testing 789 Chips & Counting**


**Evie Salomon  
VCF West 2024**

# What Kind of Chips?



# What Kind of Chips?

- Dual Inline Package (DIP) Integrated Circuits (ICs)
- 8 to 48 Pins
- Width 0.3" to 0.6"
- Tests Digital Outputs Only
- 3.3V or 5V power rail
- More chips w/ adapters





# Why Test Chips?

# Why Test Chips?

- Repair Vintage Machines

# Why Test Chips?

- Repair Vintage Machines
- Building “Retro” Machines / Interfaces

# Why Test Chips?

- Repair Vintage Machines
- Building “Retro” Machines / Interfaces
- Catalog / Sort Collection

# Why Test Chips?

- Repair Vintage Machines
- Building “Retro” Machines / Interfaces
- Catalog / Sort Collection
- Buying & Selling

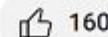
# Why Test Chips?

- Repair Vintage Machines
- Building “Retro” Machines / Interfaces
- Catalog / Sort Collection
- Buying & Selling
- Detect Variations / Fakes

# Why Test Chips?

- Repair Vintage Machines
- Building “Retro” Machines / Interfaces
- Catalog / Sort Collection
- Buying & Selling
- Detect Variations / Fakes
- Education / Learning

# The Chip Tester


## First Available July 23, 2020



The Chip Tester... it's finally here!



Evie's Revue  
1.75K subscribers



160



# Legacy Version



# What's Inside?



- Teensy 3.5
- Arduino API
- 5V tolerant I/O
- Jumpers to route power

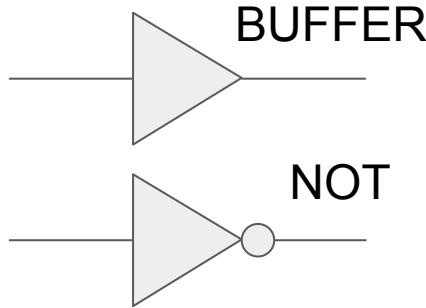
# Pro Version



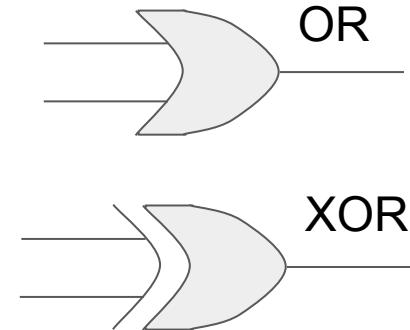
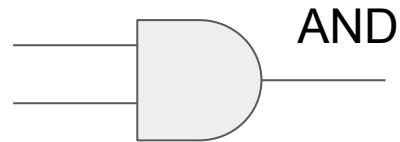
# What's Inside?



- STM32 ARM Cortex-M Processor
- Custom Bootloader (SD update)
- 48-Pin Normally Closed Socket
- Voltage & Current Limiting


# Pro V2





# What's Inside?



- No jumpers!
- Automated power routing
- MPUs for multiplexing
- Transistor pairs for power



# What is Logic?



- Inputs & Outputs (I/O)
- Low level (zero), High level (one), Floating (Hi-Z)
- Unary (one input, one output) – buffer or inverter
- Binary (two inputs, one output) – AND, OR, XOR
- Bistable (two possible states) – flip flop, memory cell
- Synchronous (edge triggered, clocked)

# Digital Logic Families

- RTL (Resistor-Transistor Logic)
- ECL (Emitter-Coupled Logic)
- DTL (Diode-Transistor Logic)
- TTL (Transistor-Transistor Logic)
- MOS (Metal-Oxide Semicon. Logic)

# **Digital Logic Families**

- RTL (Resistor-Transistor Logic)
- ECL (Emitter-Coupled Logic)
- DTL (Diode-Transistor Logic)
- TTL (Transistor-Transistor Logic)
- MOS (Metal-Oxide Semicon. Logic)

# Digital Logic Families

The  
Choice  
is TTL.

**COS/MOS**  
**is Power Conscious**

- RCA, 1974

- Texas Instruments,  
1969

# Digital Logic Families

- In the 1970's, TTL became the most common family of digital logic chips  
**(TI 7400 series)**
- The main outlier: CMOS gained market share in mid to late 70's  
**(RCA CD4000 series)**

# Transistor Transistor Logic



# Chip Tester Logic



# Complementary (Symmetry) Metal-Oxide Semiconductor Logic



## Chip Tester Logic



# Complementary (Symmetry) Metal-Oxide Semiconductor Logic

LOW

HIGH

0V

1V

2.3V

3.3V

# Chip Tester Logic

LOW

HIGH

TOLERANT

0V

1V

2.3V

3.3V

# **How do you know if tests are accurate?**

# **How do you know if tests are accurate?**

- “Trust me, I know what I’m doing.”

# **How do you know if tests are accurate?**

- “Trust me, I know what I’m doing.”
- Test accuracy is limited by sample size

# **How do you know if tests are accurate?**

- “Trust me, I know what I’m doing.”
- Test accuracy is limited by sample size
- Cross-check with other tester hardware

# **How do you know if tests are accurate?**

- “Trust me, I know what I’m doing.”
- Test accuracy is limited by sample size
- Cross-check with other tester hardware
- Perform real-world test

# How do you know if tests are accurate?

- “Trust me, I know what I’m doing.”
- Test accuracy is limited by sample size
- Cross-check with other tester hardware
- Perform real-world test
- Increase granularity to pinpoint issues

# Individual Test Results / Revision Detection



CLOCK: PASS  
LOGIC: PASS  
INT: FAIL  
OVER: PASS  
WALK: PASS  
SYNC: PASS

PASSED SALLY  
PASSED 65C02  
PASSED 6502

# Ideas for the Next Hardware Revision

- Support multi-voltage chips  
-12V, -10V, -5V, 10V, 12V, 24V
- Relays (either physical or solid-state) to prevent mixing of power signals outside of 0V-5V range
- True 5V CMOS support (level shifters)
- Analog inputs, FPGA-based time analysis
- User-definable tests

# Writing a Test

- Get the Datasheet, or at least a pinout
- Assign Power & Ground Pins (Vdd, Vss, etc)
- Configure Inputs & Outputs (Reversed on tester!)
- Apply (master) reset
- Apply clock (or crystal) input (sometimes reversed from datasheet)
- Stateless Chips: Loop through all possible inputs, verify correct outputs
- Chips with Registers: Loop through all possible values
- If millions ( $2^{20}$ ), skip a few
- Lots of buried logic: Write at least one test per pin, if possible
- Pin mutations (ZIP, PLCC)

# Call to Action

- I retired from the software industry in 2018
- My vision quest led me to YouTube, at least for a while
- I've been doing BackBit full-time since 2019
- My goal is to simplify processes and provide good value
- I'm a bit overwhelmed: BackBit Cartridge & other products
- Writing tests alone requires me to have chips on hand
- I have more ideas than I have ability to execute
- Human interaction is my fuel!
- I want this to be fun! Ask me about music, nerdy things