
 1500: #
1501: #include "../param.h"
1502: #include "../user.h"
1503: #include "../systm.h"
1504: #include "../proc.h"
1505: #include "../text.h"
1506: #include "../inode.h"
1507: #include "../seg.h"
1508:
1509: #define CLOCK1 0177546
1510: #define CLOCK2 0172540
1511: /*
1512: * Icode is the octal bootstrap
1513: * program executed in user mode
1514: * to bring up the system.
1515: */
1516: int icode[]
1517: {
1518: 0104413, /* sys exec; init; initp */
1519: 0000014,
1520: 0000010,
1521: 0000777, /* br . */
1522: 0000014, /* initp: init; 0 */
1523: 0000000,
1524: 0062457, /* init: </etc/init\0> */
1525: 0061564,
1526: 0064457,
1527: 0064556,
1528: 0000164,
1529: };
1530: /* --------------------------- */
1531:
1532: /*
1533: * Initialization code.
1534: * Called from m40.s or m45.s as
1535: * soon as a stack and segmentation
1536: * have been established.
1537: * Functions:
1538: * clear and free user core
1539: * find which clock is configured
1540: * hand craft 0th process
1541: * call all initialization routines
1542: * fork - process 0 to schedule
1543: * - process 1 execute bootstrap
1544: *
1545: * panic: no clock -- neither clock responds
1546: * loop at loc 6 in user mode -- /etc/init
1547: * cannot be executed.
1548: */
1549:
1550: main()
1551: {
1552: extern schar;
1553: register i, *p;
1554:
1555: /*
1556: * zero and free all of core
1557: */
1558:
1559: updlock = 0;
1560: i = *ka6 + USIZE;
1561: UISD->r[0] = 077406;
1562: for(;;) {
1563: UISA->r[0] = i;
1564: if(fuibyte(0) < 0)
1565: break;
1566: clearseg(i);
1567: maxmem++;
1568: mfree(coremap, 1, i);
1569: i++;
1570: }
1571: if(cputype == 70)
1572: for(i=0; i<62; i=+2) {
1573: UBMAP->r[i] = i<<12;
1574: UBMAP->r[i+1] = 0;
1575: }
1576: printf("mem = %l\n", maxmem*5/16);
1577:
1578:
1579:
1580:
1581:
1582: maxmem = min(maxmem, MAXMEM);
1583: mfree(swapmap, nswap, swplo);
1584:
1585: /*
1586: * set up system process
1587: */
1588:
1589: proc[0].p_addr = *ka6;
1590: proc[0].p_size = USIZE;
1591: proc[0].p_stat = SRUN;
1592: proc[0].p_flag =| SLOAD|SSYS;
1593: u.u_procp = &proc[0];
1594:
1595: /*
1596: * determine clock
1597: */
1598:
1599: UISA->r[7] = ka6[1]; /* io segment */
1600: UISD->r[7] = 077406;
1601: lks = CLOCK1;
1602: if(fuiword(lks) == -1) {
1603: lks = CLOCK2;
1604: if(fuiword(lks) == -1)
1605: panic("no clock");
1606: }
1607:
1608: /*
1609: * set up 'known' i-nodes
1610: */
1611:
1612: *lks = 0115;
1613: cinit();
1614: binit();
1615: iinit();
1616: rootdir = iget(rootdev, ROOTINO);
1617: rootdir->i_flag =& ~ILOCK;
1618: u.u_cdir = iget(rootdev, ROOTINO);
1619: u.u_cdir->i_flag =& ~ILOCK;
1620:
1621: /*
1622: * make init process
1623: * enter scheduling loop
1624: * with system process
1625: */
1626:
1627: if(newproc()) {
1628: expand(USIZE+1);
1629: estabur(0, 1, 0, 0);
1630: copyout(icode, 0, sizeof icode);
1631: /*
1632: * Return goes to loc. 0 of user init
1633: * code just copied out.
1634: */
1635: return;
1636: }
1637: sched();
1638: }
1639: /* --------------------------- */
1640:
1641: /*
1642: * Set up software prototype segmentation
1643: * registers to implement the 3 pseudo
1644: * text,data,stack segment sizes passed
1645: * as arguments.
1646: * The argument sep specifies if the
1647: * text and data+stack segments are to
1648: * be separated.
1649: */
1650: estabur(nt, nd, ns, sep)
1651: {

3,4,5
MAY

VINTAGE
COMPUTER
FESTIVAL

Agenda:
Friday Only: Tech classes and special UNIX track
Sat./Sun.: Exhibit halls, vendors, consignment, museum open, software
store, learn-to-solder, and much more!
Fri./Sat./Sun.: build single-board computer kits  

Keynotes:
Friday afternoon: Steve Bellovin, USENET/computer security
Saturday morning: Ken Thompson, coinventor of Unix
Sunday morning: Joe Decuir, Atari/Commodore engineer  

Data:
For full details visit: www.vcfed.org/vcfeast
Contact: Evan Koblentz, evan@vcfed.org, (646) 546-9999
Proceeds benefit: Vintage Computer Federation and InfoAge Science
& History Center (both are 501(c)(3) nonprofit organizations)

Special Thanks to:
Hackaday
Association for Computing Machinery
IEEE History Center

/*
 * If the new process paused because it was
 * swapped out, set the stack level to the last call
 * to savu(u_ssav). This means that the return
 * which is executed immediately after the call to aretu
 * actually returns from the last routine which did
 * the savu.
 *
 * You are not expected to understand this.
 */
 if(rp->p_flag&SSWAP) {
 rp->p_flag =& ~SSWAP;
 aretu(u.u_ssav);
 }

EAST InfoAge
Science &

History Center
2201 Marconi Rd. 
Wall NJ 077192019

Tickets available online and at the door;
free for age 17 and younger

